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ABSTRACT

A random stress-hisbory which is proportional to the stationary
responee of & single-degree-of-freedom vibratory system to wide-band
Geussian excitation is assigned a damage based on the Palmgren-Miner
hypothesis and an idealized S-N law. The damsge accumlated in
time T is a random varlable because of the randomness in the number
of "cycles" and the randomness in the amplitudes of the "ecycles."
The mean and variasnce of the damage are obtalned by two procedures:
one which accounts for both sources of randomness and one which
neglects the randommess in the number of "eycles" contained in the
interval.. The two procedures give the same asymptotic result when
the bandwidth shrinks to zero. The theoretical resulis are illustrated

by curves computed for & particular example.




The Variance in Palmgren-Miner Damage
Due to Random Vibration

A demage D(T) can be associated with an interval T of a stationary
narrow-band random stress-history s(t) by using the Palmgren-Miner
criterion ngj. This demage is a random variable taking on different
values for each sample stress-history. In 1954 Miles| 2 [ evaluated
the expected value or mean of the damage when the stress-history was the
response of a single-degree-of-freedom vibratory system to white Gaussian
excitation and the S-N diagram or fatigue "law" for the material was

asgumed to have the form

Ns” = constant = 5

L

We shall be concerned with the same situation and will evaluate the variance
of the damage in addition to the mean.

The damage D(T) when T is large is the sum of & large number of
incremental damages each associated with a single "cycle." The randomness
in D is due to the randomness in the amplitudes of the individual “cycles"
ané also due to the rendomness in the number of "cycles” contained in the
interval T. We have maede two evaluations of the variance; the first takes
into account both sources of randomness while the second is an approximate
solutiﬁn which considers only the randomness in the amplitudes and neglects
the randomness in the periods of the "cycles." The two solutions are shown
to epproach one another in the limit as the bandwidth is decreased to zero.

In both cases the major difficulty in the analysis is due to the strong




correlation in the incremental damages of succeeding "cycles."” It has been
necessary to meke approximations which are only valia vhen T is long in
comparison with the decey time of the correlation.

It does not appear possible to obitain the complete probabillity
distribution of the damage D(T) for finite T although the centrsl limit
theorem can be invoked to show that inthe limit as T-»c0then the
distribution of D becdmes normal. In this limiting situati&ﬁ the mean and the

variance are sufficient to completely characterize the distribution of D.

1. Mean and Variance of Sums

Let the total interval T be divided into M equal subintervals. With each
subinterval let an incremental damage di be associated. For the moment
we postpone the discussion of how the incremental damage 1s to be associated.
The total damage
M-
P — i d
D = ? [ (2)
Z i 4
is the sum of (correlated) random variables. The mean and variance of D

are
M-

D] = Z E[d;]
NN €
var [D] = E[p*]-(Flp]) = Z 2 Eldd]- (E[D])*

{ o

Now since the stress-history is stationary the damage process is also and the
statistical aversges needed in {3) are invariant with respect to a translation

of the time axis. Thus

Eld;] = ELd;] = E[ 4] ()
Eld;d] = E£[d 4. ;]




-3-

for arbitrary i1 and j. The sums in (3) may then be recast as follows

- ETD] M ELd,]
o Mt o«
wr [ D] = M{ECdZ]-(Erdegf{+ 22 (M- K E[ad]- € Ld, )

Although the damages in adjacent subintervals may be strongly correlated

!

5)

1

d.k and do become uncorrelated when k gets large enough and thus

: — - z
bin  § Eldod, J-(E L) § = 0 (6
This will be helpful for evaluating (5) for large M.

2. Incremental damage assoclated with subintervals.

Ordinarily the Palmgren-Miner hypothesis is used to associate a

/
s Ny (7

is the number of cycles until fallure at the

damage

with the 1.th cycle where Ni

constant stress amplitude Si as glven by the S-N diagram or by a relation
such a8 (1). In order to avoid certain subtleties involved in determining
the peak asmplitudes of a random process we consider a sligirb modification

of the hypothesis in which we asgociate a damage

d = zfv (8)

with a zero-crossing of the stress process using the slope & a8 & measure

of the stress-amplitude. If the expected frequency of the narrow band process

is W, where
0
i Z
T - R"0) Jorade
= _ - (9
© C’;_Z

R () uloo Glw) dw
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and R(~) end G(W) are the autocorrelstion function and spectral density
respectively of the process (assumed to have zero mean) then the equivalent
stress amplitude we associate with a zero-crossing having slope 8 is

S = (5] (10)

o

and the number N in (8) is obtained from the $-N diagram using (10) fox
S. The factor 2 in (8) arises because there are twice as many zero-crossings
as cycles in & narrow-band process; it could be avoilded by considering only
the zero~crossings with positive slope but the integrations leading to (21)
are considerably simpler when we associate damage with half-cycles
rather than with cycles. The relation (10) would be strictly correct for
simple harmonic motion at frequency .. In & narrow-band process it
represents a good approximation to the amplitude of the stress peak immediately
after (or before) the zero-crossing. We believe that the statistics of the
zero-crossing damage process so defined will not differ significantly from
the statistics of the peak-assoclated damage process.

The two evaluations which follow are based on two cholces for the
subinterval duration. In the first case the subinterval is taken to have
the duration A% and eventually At is taken to approach zero. This procedure
rermits us to teke into account the varlation in the periods of the "cycles."”
In this case the incremental damage dy is taken to be zero if there is no zero-
crossing within the subinterval or to be the value (8) if there is a zero-
crossing. In the second cese the variatian in the periocds of the "cycles"

is neglected and the duration of each subinterval is teken to be ™/, 3 1i.e.,




=5

the expected duration of & half-cycle. The incremental damage is taken to
be (8) but here instead of using (10) we find it more convenient to use

the value of S given by Rice's envelope function | 3] .

3. First cage: infinitesimal subintervals.

The interval T is divided into equal subintervals At such that

Mat = T (1)

We assume that At is so small that the stress-history s(t)'can be taken

as a straight line throughcut the interval. The fraction of samples which
will have a zero-crossing in a particular subintervai ot can be ascertained
by considering the distribution of combinations s(t) and &(t) where t is

the time at the beginmning of the interval. This distribution is described
by the jJoint demsity function p(s,8). Combinations of 8 end & which involve
8 zero-crossing are those for which

~sat € 5 < O, § >0
(12)

O < 5 < - SAt, $ <0
For those samples having a zero-crossing the incremental damage is given
by (8); for those without a zero-crossing there is no damage. The expected
damage in the subinterval 4t is then

o} <34t co (
- -_[.. !, .y _i~ s A(S ,§\V|5
E Ed‘a] — S ZN d“s P(SIS)CZS '+' ij (LDJ' U 1=/
Yoo (o) o Zsat {13}
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To evaluate (13) we make the assumption that s(t) is a Gaussian process

so that ce
. TEeE
peo,8) = 2 € (ab)

and we assume that (1) is the S-N curve of the material so that using (10)

A
I A 15
N T2 ( coo,S’i) 52

Inserting (14) and (15) into (13) yields

IS

Fld) = at 22 (@@/\ "1+ ) (16)

21 3,

Finally inserting (16) and (11) into (5) leads to the mean or expected

damsge for an interval T
— o 6\ A .
Eom] = AT (%i) |71+ x2) (17)

where 1),; 18 the expected number of zero-crossings with positive slope; i.e.,

Q: igs the e;:rected or mean frequency in cycles per unit time

o= (18)
7

The result (17) although derived differently is identical with that of Miles [2].

The sbove derivation can be repeated using the square of (15) to obtain



the mé¢an square damage associated with the subinterval at.

s [ 2 N\ X
EL4] = ————wl)(ém (i";{_ ) Ctex) (18)
e |

The derivation for the correlation terms E [d‘.odtk'j is similar but more complex.
The product 4,4, is zero unless zero-crossings occur in doth the zero-th and
k-th subintervels in which cese the product is given by multiplying together
terms of the form (8) which in turn depend (10) on the slopes & at the
zero-crossings. The fraction of samples vwhich will have zero crossings in
hoth subintervals can be ascertained by considering the distribution of
combinations s(t), 8(t), s{t + kX At) and 8(t + kat) which is described

by the four-dimemsional joint probability demsity p(s(t), &(t), s(t +2),

é(t + 7 )) Again by integrating over the subregion where both subintervals
have zero-crossings we find, smalogous to (13)

T o0

= Cdodh] = (A f Lo L

o o, 151 bOL, 0 5)d5d5 (19

Yoo oty

for k#0. To evaluate (19) we make the apsumption that s(t) is a Gaussian

procesg go that ‘;-3:(

[

) . / | . . Iy
/3(0) o, 0, jk) = Q}FW é/k/,é [“ ﬂ (/lzz % ’{LZ/[M %% +A445K‘ ,_// (20)

where the /\- perameters depend on the mutocorrelation of the stress process and

are evaluated in Sec. 4. Again we assume that the incrementsl damages are




given by (15) but here to render the integral tractable we maske the additional

agssumption that the expoment X is an odd positive integer. In this way we

£ind | 4 |

o+ 32

- J / . = /l >
Erdedd = (23] () M) Joma FORE 5o L)
7

dL

Finally to obtain the variance in the total damage we insexrt (21), (18)
and (16) into (5). At this time we also let At->0 thereby converting the

summation into & Riemanmn integral. With XAt = 7" we find

Nt s 4 2K

var ['D('T}] = V}’ (5‘5\%‘ [0+ x) +

m+3’2 2 (22)
(,o‘z(T L)g/ 2«*2 m s (7+ 7+z;£, A?t/\ - 1}5{'5

9( F(“

Further evaluation requires a specific choice for the autocorrslation function

R{7) in order to specify the A-parameters and the hypergeometric function.

k. Specialization to the response of & single-degree-of-feedom system.

We limit our discussion to the case where the stress history s(t) im
proportional to the response of a lightly-damped single-degree-of-freedom
oscillator vhen excited by stationary white noise; i.e., s{(t) is taken to

satisfy the differential equation
§ o+ 2zw, 5 o+ W5 = ft) (23)

where & 1s the demping ratio and tJ, is the undsmped natural frequency. Whexn

the excitation f(+) is stationary white nolse the autocorrelation fumction of



the response is

Sy

Rer) = @° 6‘5(4’”(605/)’/:1# 5/nﬁ’5‘)‘ T20 (2b)

where p =V 1 -@;2 (J, 1is the damped natural frequency and agz is the mean
square stress. The /\-parameters are obtained from R(7T) according to the

following definitions
- ~ . " /  Z ” Y s 4
A= | Rio) RO R0~ Rtu*]+ 2R [RaRly-RoR)] + R

A = - RWOIR0 R ] - RR(2) (25)

1\22‘: +
A= RUT[R@ S Pt + REIRTS

Using (24) we find that the expected frequency of the narrow band process,
W, of (9), is just the natural frequency «J, . It is thus possible in
principle to insert (25) and (24) in (22) and evaluate the variance of the
damage. The integration appears however to involve formidable difficulties.

We therefore discontinue the exact evaluation and consgider an approximation

for small damping. We use the following small Z approximations to {25) for

use in (22)
3,4 - 2w, £y &
*/l = G\S a)n < r- ¢ ' }
2 - ¢ 2 -2,
Lo,= 057w (1- ¢ 4 /
S L st S
,(,l\ 5 US' LV ( ;’ (.. /] e o, L (26)
N _ - 25T &
Saeeme = (1-¢ )
AT
AN -2 =20l T 2 ..
—L = & o LosTed, L
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The argument of the hypergeometric function thus oscillates with period
T/, . The integrand in (22) has pesks at nf~ /., and falls to

zero at (20 + 1)N/2w), , n=1,2,... . Furthermore the integrand is
negligible in the range 0 <7T<@/2¢),. We have been able to obtain &

good approximation to the integral [}:}by substituting a smoothed integrand

in which the expression in braces in (22) is replaced by

~ 250, )
{F(-f;“ng—‘;i;e; )—4} (27)

and the limits of integration are changed to /2, and .. The

approximations Involved are good for c;-4<’l and S W,T >> 1. The result

is
RS TS Ay X T 0{ £ 0 “7“/3(0()
gy LD(I)/ - = \ D;;_.)l (’H—é—) ‘E(t’()-‘ L-;f;j—;::}:—f'fzf)?-_]:— (28)
where the f-quantities are given by
OO— o --;’LLJ,,,’[:
fw = & ( {Fez 251 - (] adz
2 9 . /
r__yh f — ., . ) RS y A7
vcz(ci) = Z’?r‘“‘J‘] u),,cg/-_-%)—%()/)d ) - ’} ot (29)
I 1+ x
foy = )
o 1 " L+ x/2)

and are tsabulated in Table I. A partial check on the accuracy of approximation
was made by comparing the smoothed integral used above with the results of a

numerical integration of the exact integral. For (x= 9 and 7= 1/60 the
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discrepancy was less than one part in 300. The errors tend to increase
rapidly with X but for the range tabulated in Table I the result (28) is
probably satisfactory for engineering purposes for &< 0.05 (@ >10) 4if the
expected number of cycles '1);{"1‘ is very large compared with Q = l/ 25 . In
this range very little additional error is made by neglecting the f2 and f3
terms in comparison with the f; term in (28). Thus in the range indicated

we may usge

. 1 [ 226Gt ~2
vatr | D(T)] = =) | 1+ 8) Fiy (30
c‘; \ Sj_ 2/

which indicates a linear growth of the variance with T and an inverse
dependence on the damping ra.tio; for a given material and a fixed mean
square stress level.

If we denote the standard deviation of the total damage by 0'5 we
can combine the results (17) and (30) for the mean and variance into the

following ratio

% ) Ve
- 1
EL[D] SuT (3

which indicates that the relative wvarlance for a given material decreases

in inverse proportion to the square root of the product of T and the bandwidth
+ }
2 31" (rl/Q).

5. Second cage: helf-cycle subinterwvals.

Here we consider the stress process s(t) to consist of a sequence of

half-cycles each of duration ’JT/LOU ;il.e., we neglect the random variation in
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periods. With each half-cycle the incrementel damage (8) is 1/2N where

the S-N diagrsm or (1) 1s used to relate N to a stress amplitude S associated
with the half-cycle. For this purpose we find it convenient to use Rice's
envelope function S(t). For a narrow-bend process Rice| 3| has shown that the

first and second order probability densities for S(t) are

. 3
- L R 2 (32)
Lo S b ~ i B3 o - »";(E"(b 4
I’J(b@)ﬁk) - _‘%\—lg *LDK —/Zt’bo ‘Sk> Cj =A ’ k)
b 2

where (; “is the mean square of the process s(t) and the quantities A = 0s =B
and B are functlons of the time interval t, - %, and depend on the spectral
density of s(t). They will be described later.

The expected value of the incremental damage is

&)

o | .
CLd | = gv ;/\/—_(5) ps)ds (33)

Substituting from (1) and (32) yields

E LA = é ( \(_2?5,6;) [7(1+ OC/Z) (3&)

Note that this is equivalent to (16) with At = TT/cd,. This is essentially
the technique used by Milec | 2| in deriving (17). An exactly similar evalustion

using (.1/@1)2 in place of 1/2N in (33) lesds to

(39)

Erde) = 4 -§,~z—h) Merrs
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vhich is equivalent to (18) with t =7/w, .
Turning next to the correlation terms in (5) we have

3 rXJ

REC N // B
[b(od[k] — S S DN ?M }9(5 S )L\/,‘S\{; (./&k (36)

o

which on substitution from (1) and (32) ylelds

E L] = - )“’@g;— Fes-g1, ) o
S
which i8 now quite different from (21) because (37) 1s the correlation
between two half-cycles separated by kT /¢, while (21) is the correlation
between two infinitesimal intervals separated by kAt. Finally to obtain
the varience we insert (37), (35) end (34) into (5) to obtain the variance

after M half-cycles (T = MM/, = MP/2)

var [ D(T)] = 7);/ (25 ) [W(Ho() “(i+ &/2)]“1‘

M-1 (B)
20" 7 :
(G e 512l Feg-g1; ) <]
k=t , ijﬁ/

Further evaluation requires a specific choice for spectral density G(W)
of the process in order to specify the parameter B and hence the hypergeometric

function.
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6. Specialization to the response of a single-degree-of-feedom system .

We limit our discussion again to the process described in Sec. L. The
spectral density of the process is
- A Y
hes,,

(geo) =  ——m o (399

’ " o s . N \.gJ'IV'./: .
(o - («)‘,,) =t 44] ery, [t

and the parameter B follows from the following operation

2- 2 ) A
B = /MII’3 - / ‘{/L// P

s 7 f (ples)cos (v-w,) T dev (o)
‘ &
oo ,
//¢p¢ . {‘ (}{ZQ) S/4 (@)—dMJ'Z’ waj
o

This is quite complicated in general, but here we are only interested in
times v of the form k’ﬂ’/g.),., and moreover we will agaln accept the same type

of small damping approximetions used in Sec. 4. Under these circumstances

we find simply

- Kwer
) - - 7
D T (]t’.v € 1)
and the term in the braces being swmmed in (38) becomes
x '
- ,, - 2kPe
D S - A - L
&)LQ.J F,4:¢ /) J% (h2)
J

At this stage there is considerable similarity between the term being summed (ip)

and the smoothed integrand term (27). In fact the sum may be considered as @

crude attempt to approximate the integral. The hyperpeometric functions in ( 38)
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can be expanded in series and the order of summations interchanged. The
k-summations involve simple geometric progressions which can be summed. When
M is large and Z;is small the resulting series can be recognized as equivalent

to the functions defined in (29). In this way we obtain

» X -
e S I W~ y
var | Der)f = ('?;f /l (%) g [ ey~ szt + 2
\ AL

a Y -~ "j (hs)
- ’(_a“"_/.) + fied)
e )
“+
for the variance when 2; is small and the expected number of cycleg 7, T ia
large. Again if 1) T is large (even though < is small) we can dispense

with the final two terms and use the asymptotic form

artom) = EI(E bt sto-si] o

which should be compared with (30). We note that the discrepancy between the
first case which accounted for the random variations in periods and the second
cage which neglected this source of variance is small for light damping and that

the ratio of the two expressions (30) and (M) approaches unity as §—9o,

T. Example
Consider the system shown in Fig. 1 in which the vehicle has a stationary

random acceleration with uniform epectral densgity 0.5 gg/cps. With the
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following data

L, length of cantilever, h.o"

it

i

h, side of square cross section 0.25"

E, 758-T6 aluminum alloy 0.3 x 106psi

i

\/ 1 1" n - 6.09
8, " " " =2x 105 pei
m mass of one cubic inch of steel = 7.28 x :LOLL

1o 3ec?/in

the natural frequency of the system is
/A),,) = 465 rad/sec (73.9 cps)

and the rms stress level of the narrow-band stress résponse in the extreme

fivers at the root of the cantllever is

2320 :
= = === psi (45)
s Iz

whereZ; is the damping ratio of the system. With these values 1t is now possible
tﬁl/(]écj).e expected damage (17) and the standard deviation of the damage (31)

as functions of & and T. The value 2.32 for fl((x) is obtained from
interpolation in Table I. The resulis are shown in Flg. 2 for four different
valuees of system damping. The expected damages appear as straight lines with
unit slopes indicating linesr growth with time. The variance in the accumlated
damage is suggested by the curves showing E [DJ + 05 . Note here that the
primary effect of the damping is through its action in setting the rms stress

level (§'f)) while a secondary effect iz its action in controlling the deviation of
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the dsmage through the correlation of the dameges of successive cycles { 31).
It is also of interest to compare the two solutions (30) and (4k4) for the
veriance in the range covered by Fig. 2. We find a 25% discrepancy in the
variance for @ = 10 and 2.5%for@ = 100. The discrepancies in the deviation
(J;> would be about half of these values.

The Palmgren-Miner criterion for failure is D = 1. Fig. 2 indicates
+hat when the average damage reaches unity there is actually a distribution
of dsmage across the ensemble of sample historles. There will correspondingly
be a distribution of time-to-failure Tp. This distribution is unknowm but
the central limit theorem can be invoked to show that it also becomes
‘asymptotically Gaussian as T > and that the plus and minus one-sigma
limits for TF are sgymptotically the points where the plus and minﬁs one-gigma

curves for damage cross D = 1.
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Table 1 Quantities in Equation (28) Which Depend on

the Fatigue Law Exponent » .

fl(fx ) fe( X) f3(->< )
1 0.0kl 0.00323 0.0796
3 0.369 0.0290 0.212
5 1.280 0.090k 0.679
7 3.72 0.223 2.33
9 10.7 0.518 8.28
11 31.5 1.230 30.0
13 96.7 3.06 111.2
15 308. 8.11 : k15,



n>
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Fig. 1

Fig. 2
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CAPTIONS FOR FIGURES

(a) Random stress history at A is due to random vibration of
vehicle. (b) Schematic excitation - response diagram.
Palmgren-Miner damage at root of cantilever beam. The mean
damege expected 1s shown together with the plus and minus

one-aigme limits.



%
Y,
el

/

AN

c

SSAS

NN
UMM

N
¢
!

—

IR

Cantilever Beam

7

OO0 ,
L
(a)

..

Excitation is Response is Stress
Acceleration in Extreme Fibers
of Vehicle Linear at Root of Beam
& | Time - Invariant N
. . ) 3Eh
x(t]) = Xp System s(l)=2L2 {x|-%o0)

(b)

FICORY 1



o




UNCLASSIFIE

UNCLASSIFIE




